17 research outputs found

    State Sum Models and Simplicial Cohomology

    Get PDF
    We study a class of subdivision invariant lattice models based on the gauge group ZpZ_{p}, with particular emphasis on the four dimensional example. This model is based upon the assignment of field variables to both the 11- and 22-dimensional simplices of the simplicial complex. The property of subdivision invariance is achieved when the coupling parameter is quantized and the field configurations are restricted to satisfy a type of mod-pp flatness condition. By explicit computation of the partition function for the manifold RP3×S1RP^{3} \times S^{1}, we establish that the theory has a quantum Hilbert space which differs from the classical one.Comment: 28 pages, Latex, ITFA-94-13, (Expanded version with two new sections

    Higher Algebraic Structures and Quantization

    Full text link
    We derive (quasi-)quantum groups in 2+1 dimensional topological field theory directly from the classical action and the path integral. Detailed computations are carried out for the Chern-Simons theory with finite gauge group. The principles behind our computations are presumably more general. We extend the classical action in a d+1 dimensional topological theory to manifolds of dimension less than d+1. We then ``construct'' a generalized path integral which in d+1 dimensions reduces to the standard one and in d dimensions reproduces the quantum Hilbert space. In a 2+1 dimensional topological theory the path integral over the circle is the category of representations of a quasi-quantum group. In this paper we only consider finite theories, in which the generalized path integral reduces to a finite sum. New ideas are needed to extend beyond the finite theories treated here.Comment: 62 pages + 16 figures (revised version). In this revision we make some small corrections and clarification

    Hennessy-Milner Logic with Greatest Fixed Points as a Complete Behavioural Specification Theory

    Get PDF
    There are two fundamentally different approaches to specifying and verifying properties of systems. The logical approach makes use of specifications given as formulae of temporal or modal logics and relies on efficient model checking algorithms; the behavioural approach exploits various equivalence or refinement checking methods, provided the specifications are given in the same formalism as implementations. In this paper we provide translations between the logical formalism of Hennessy-Milner logic with greatest fixed points and the behavioural formalism of disjunctive modal transition systems. We also introduce a new operation of quotient for the above equivalent formalisms, which is adjoint to structural composition and allows synthesis of missing specifications from partial implementations. This is a substantial generalisation of the quotient for deterministic modal transition systems defined in earlier papers

    Picturing classical and quantum Bayesian inference

    Full text link
    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `conditional density operators'. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.Comment: 38 pages, lots of picture

    Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

    Full text link
    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g)U_q(g). They have the same FRT generators l±l^\pm but a matrix braided-coproduct \und\Delta L=L\und\tens L where L=l+SlL=l^+Sl^-, and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BMq(2)BM_q(2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(\usl) (also known as the `quantum Lorentz group') is the semidirect product as an algebra of two copies of \usl, and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.Comment: 45 pages. Revised (= much expanded introduction

    Dichromatic state sum models for four-manifolds from pivotal functors

    Get PDF
    A family of invariants of smooth, oriented four-dimensional manifolds is defined via handle decompositions and the Kirby calculus of framed link diagrams. The invariants are parametrised by a pivotal functor from a spherical fusion category into a ribbon fusion category. A state sum formula for the invariant is constructed via the chain-mail procedure, so a large class of topological state sum models can be expressed as link invariants. Most prominently, the Crane-Yetter state sum over an arbitrary ribbon fusion category is recovered, including the nonmodular case. It is shown that the Crane-Yetter invariant for nonmodular categories is stronger than signature and Euler invariant. A special case is the four-dimensional untwisted Dijkgraaf-Witten model. Derivations of state space dimensions of TQFTs arising from the state sum model agree with recent calculations of ground state degeneracies in Walker-Wang models. Relations to different approaches to quantum gravity such as Cartan geometry and teleparallel gravity are also discussed

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure
    corecore